Description

Symantec NetRecon 3.5 Security Update 5 is a content update for NetRecon 3.5 that introduces one new objective, “Discover trojans running on UDP ports,” and five new vulnerability checks.

Installing the Security Update adds several new files to the NetRecon directory and modifies several other files. Security Update 5 includes changes made in all previous NetRecon 3.5 Security Updates.

Installing

Security Update 5 is installed completely through LiveUpdate. There is no executable that the user runs to update the product.

LiveUpdate can be started from the LiveUpdate button in the NetRecon icon bar or the Help menu bar. Click and follow the instructions.
Verifying Installation

After installing Security Update 5, you can verify proper installation by going to Help/About and confirming that the version is 3.5 SU5.

Security Update 5

New Objectives

Discover trojans running on UDP ports

This objective discovers trojans using the UDP protocol by communicating with them on their own ports in addition to determining that the port is open, thus avoiding false positives from benign processes using a port known to be used by some trojans.

New Vulnerability Checks

Security Update 5 introduces five new vulnerability checks. Versions of these checks already exist in the database, however these checks go one step further in identifying not only the open port, but the particular trojan using the UDP protocol.

mstream trojan horse master allows attack-by-proxy

NetRecon can discover a network resource running a mstream trojan horse master.

mstream is a distributed attack tool that can be installed on compromised network resources by attackers who wish to use those network resources as attack agents in subsequent attacks.
Placing mstream components allows attackers to use your bandwidth and computing resources to launch a wide range of denial of service attacks against other network resources.

The presence of mstream indicates that the network resource was compromised through another vulnerability.

mstream trojan horse server allows attack-by-proxy

NetRecon can discover a network resource running a mstream trojan horse server.

mstream is a distributed attack tool that can be installed on compromised network resources by attackers who wish to use those network resources as attack agents in subsequent attacks. Placing mstream components allows attackers to use your bandwidth and computing resources to launch a wide range of denial of service attacks against other network resources.

The presence of mstream indicates that the network resource was compromised through another vulnerability.

wintrinoo trojan horse daemon allows attack-by-proxy

NetRecon can discover a network resource running a wintrinoo trojan horse daemon.

Wintrinoo is a distributed attack tool that can be installed on compromised network resources by attackers who wish to use those network resources as attack agents in subsequent attacks. Placing wintrinoo components allows attackers to use your bandwidth and computing resources to launch a wide range of denial of service attacks against other network resources.

The presence of wintrinoo indicates that the network resource was compromised through another vulnerability. The registry method is subject to registry access being obtained, but is unlikely to yield a false positive.
trinoo trojan horse daemon allows attack-by-proxy

NetRecon can discover a network resource running a trinoo trojan horse daemon.

Trinoo is a distributed attack tool that can be installed on compromised network resources by attackers who wish to use those network resources as attack agents in subsequent attacks. Placing trinoo components allows attackers to use your bandwidth and computing resources to launch a wide range of denial of service attacks against other network resources.

The presence of trinoo indicates that the network resource was compromised through another vulnerability.

shaft trojan horse daemon allows attack-by-proxy

NetRecon can discover a network resource running a shaft trojan horse agent.

Shaft is a distributed attack tool that can be installed on compromised network resources by attackers who wish to use those network resources as attack agents in subsequent attacks. Placing shaft components allows attackers to use your bandwidth and computing resources to launch a wide range of denial of service attacks against other network resources.

The presence of shaft indicates that the network resource was compromised through another vulnerability.
New Features

ESM Integration

The ESM integration has been updated to integrate with ESM 5.5 as part of the SU installation and will be functional for all future SUs.

By default, NetRecon automatically prompts the user to re-register with ESM. Additionally, a shortcut (ESM Registration Tool) will be installed in the NetRecon directory in the start menu (Start>Programs>Symantec>NetRecon 3.5). If ESM is installed, but not registered with NetRecon, only the shortcut will be installed in the NetRecon directory.

The new ESM Registration Tool launches esmregister.exe, allowing the user to register NetRecon with ESM at anytime. The ESM Registration Tool also repairs broken ESM registrations to ESM 5.5. ESM files registered with NetRecon will be updated to SU4.

If an ESM agent is not installed, the NetRecon integration will not be prompted for.

New Objectives

Discover network resources not running Norton AntiVirus Corporate Edition

This objective will only report messages for machines where NAVCE is not detected on the machine and displays the message, “NAVCE service not detected.”

If you specify an IP address or machine name that is not valid NetRecon will generate a service not detected message.
Discover network resources running Norton AntiVirus Corporate Edition

This objective only reports messages for machines where NAVCE is found on the machine and displays the message, “NAVCE Service Identified.” This objective checks for the following information:

- Service: NAVCE Client or NAVCE Server
- Version/Revision: NAVCE version number (Symantec supports only NAVCE versions 6.x or newer)
- Miscellaneous: date and time of “Last Virus Definition” and date and time of “Last System Scan”

Security Update 3

New Vulnerability Checks

Security Update 3 introduces 143 new web server vulnerability checks such as vulnerable CGI script files, Cold Fusion files, and Active Server Page files. Each of these checks were previously located only in the ESM for WebServers 1.0 product.

The following is a list of the new web server vulnerability checks.

1. HTTP allows CGI access to .html/............./config.sys
2. HTTP allows CGI access to _vti_bin/shtml.dll
3. HTTP allows CGI access to _vti_inf.html
4. HTTP allows CGI access to _vti_pvt/administrators.pwd
5. HTTP allows CGI access to _vti_pvt/authors.pwd
6. HTTP allows CGI access to _vti_pvt/service.grp
7. HTTP allows CGI access to _vti_pvt/service.pwd
8. HTTP allows CGI access to _vti_pvt/users.pwd
9. HTTP allows CGI access to achg.htr
10. HTTP allows CGI access to aexp.htr
11. HTTP allows CGI access to aexp2.htr
12. HTTP allows CGI access to aexp2b.htr
13. HTTP allows CGI access to aexp3.htr
14. HTTP allows CGI access to aexp4.htr
15. HTTP allows CGI access to aexp4b.htr
16. HTTP allows CGI access to anot.htr
17. HTTP allows CGI access to anot3.htr
18. HTTP allows CGI access to autoexec.bat
19. HTTP allows CGI access to carbo.dll
20. HTTP allows CGI access to config.sys
21. HTTP allows CGI access to doc
22. HTTP allows CGI access to etc/group
23. HTTP allows CGI access to etc/passwd
24. HTTP allows CGI access to iisadmin/bdir.htr
25. HTTP allows CGI access to iisadmin/ism.dll
26. HTTP allows CGI access to passwd
27. HTTP allows CGI access to passwd.pwd
28. HTTP allows CGI access to passwd.pwl
29. HTTP allows CGI access to passwd.txt
30. HTTP allows CGI access to password
31. HTTP allows CGI access to password.pwd
32. HTTP allows CGI access to password.pwl
33. HTTP allows CGI access to password.txt
34. HTTP allows execution of AT-admin.cgi CGI
35. HTTP allows execution of AnyBoard.cgi CGI
36. HTTP allows execution of AnyForm.cgi CGI
37. HTTP allows execution of AnyForm2 CGI
38. HTTP allows execution of CGImailto.exe CGI
39. HTTP allows execution of Count.cgi CGI
40. HTTP allows execution of FormHandler.cgi CGI
41. HTTP allows execution of GetFile.cfm CGI
42. HTTP allows execution of _AuthChangeUrl CGI
43. HTTP allows execution of _vti_bin/shtml.exe CGI
44. HTTP allows execution of _vti_pvt/shtml.exe CGI
45. HTTP allows execution of adminlogin CGI
46. HTTP allows execution of adsamples/config/site.csc CGI
47. HTTP allows execution of aglimpse CGI
48. HTTP allows execution of alibaba.pl|dir CGI
49. HTTP allows execution of args.bat CGI
50. HTTP allows execution of args.cmd CGI
51. HTTP allows execution of ax-admin.cgi CGI
52. HTTP allows execution of ax.cgi CGI
53. HTTP allows execution of bb-hist.sh CGI
54. HTTP allows execution of bigconf.cgi CGI
55. HTTP allows execution of bnbform.cgi CGI
56. HTTP allows execution of catalog_type.asp CGI
57. HTTP allows execution of cgi-shl/win-c-sample.exe CGI
58. HTTP allows execution of cgiwrap CGI
59. HTTP allows execution of classifieds.cgi CGI
60. HTTP allows execution of convert.bas CGI
61. HTTP allows execution of counter.exe CGI
62. HTTP allows execution of day5datacopier.cgi CGI
63. HTTP allows execution of day5datanotifier.cgi CGI
64. HTTP allows execution of default.asp CGI
65. HTTP allows execution of dfire.cgi CGI
66. HTTP allows execution of displayopenedfile.cfm CGI
67. HTTP allows execution of domcfg.nsf CGI
68. HTTP allows execution of dumpenv.pl CGI
69. HTTP allows execution of edit.pl CGI
70. HTTP allows execution of environ.cgi CGI
71. HTTP allows execution of envout.bat CGI
72. HTTP allows execution of exprcalc.cfm CGI
73. HTTP allows execution of faxsurvey CGI
74. HTTP allows execution of filemail.pl CGI
75. HTTP allows execution of files.pl CGI
76. HTTP allows execution of formmail.pl CGI
77. HTTP allows execution of fpcount.exe CGI
78. HTTP allows execution of fpexplore.exe CGI
79. HTTP allows execution of gH.cgi CGI
80. HTTP allows execution of glimpse CGI
81. HTTP allows execution of guestbook.cgi CGI
82. HTTP allows execution of guestbook.pl CGI
83. HTTP allows execution of handler CGI
84. HTTP allows execution of handler.cgi CGI
85. HTTP allows execution of info2www CGI
86. HTTP allows execution of input.bat CGI
87. HTTP allows execution of input2.bat CGI
88. HTTP allows execution of kms_configure CGI
89. HTTP allows execution of maillist.pl CGI
90. HTTP allows execution of man.sh CGI
91. HTTP allows execution of nph-publish CGI
92. HTTP allows execution of nph-test-cgi CGI
93. HTTP allows execution of openfile.cfm CGI
94. HTTP allows execution of perl/files.pl CGI
95. HTTP allows execution of perlshop.cgi CGI
96. HTTP allows execution of pfdisplay.cgi CGI
97. HTTP allows execution of pfeiffer.bat CGI
98. HTTP allows execution of pfeiffer.cmd CGI
99. HTTP allows execution of phf.cgi CGI
100. HTTP allows execution of phf.pp CGI
101. HTTP allows execution of php CGI
102. HTTP allows execution of php.cgi CGI
103. HTTP allows execution of ppdscgi.exe CGI
104. HTTP allows execution of queryhit.htm CGI
105. HTTP allows execution of responder.cgi CGI
106. HTTP allows execution of rguest.exe CGI
107. HTTP allows execution of rwwwshell.pl CGI
108. HTTP allows execution of s97_cgi CGI
109. HTTP allows execution of s97r_cgi CGI
110. HTTP allows execution of search.cgi CGI
111. HTTP allows execution of search97.vts CGI
112. HTTP allows execution of sendform.cgi CGI
113. HTTP allows execution of sendmail.cfm CGI
114. HTTP allows execution of showcode.asp CGI
115. HTTP allows execution of startstop.html CGI
116. HTTP allows execution of status.cgi CGI
117. HTTP allows execution of survey.cgi CGI
118. HTTP allows execution of test.bat CGI
119. HTTP allows execution of textcounter.pl CGI
120. HTTP allows execution of tools/getdrvs.exe CGI
121. HTTP allows execution of tools/newdsn.exe CGI
122. HTTP allows execution of tst.bat CGI
123. HTTP allows execution of unlg1.1 CGI
124. HTTP allows execution of unlg1.2 CGI
125. HTTP allows execution of upload.pl CGI
126. HTTP allows execution of uploader.exe CGI
127. HTTP allows execution of view-source CGI
128. HTTP allows execution of visadmin.exe CGI
129. HTTP allows execution of w3-msql CGI
130. HTTP allows execution of webbbs.cgi CGI
131. HTTP allows execution of webdist.cgi CGI
132. HTTP allows execution of webgais CGI
133. HTTP allows execution of webhits.exe CGI
134. HTTP allows execution of websendmail CGI
135. HTTP allows execution of webwho.pl CGI
136. HTTP allows execution of wguest.exe CGI
137. HTTP allows execution of whois_raw.cgi CGI
Security Update 2

New Vulnerability Checks

Code Red II

NetRecon can discover a Microsoft IIS server that is infected with a variant of the Code Red worm called Code Red II. Code Red and Code Red II are malicious programs that infect Microsoft IIS web servers through a common indexing service vulnerability and then attempt to randomly propagate to other Microsoft IIS servers. Code Red II uses similar penetration and propagation techniques as the original Code Red worm by exploiting the Microsoft IIS indexing service. However, Code Red II also enables a backdoor that allows remote system level access.

Oracle TNS Listener contains a Buffer Overflow

NetRecon can discover a version of Oracle TNS listener susceptible to a buffer overflow attack. The Oracle TNS (Transparent Network Substrate) provides the ability to communicate with Oracle database services remotely. A bug in the TNS listener service allows a remote attacker to overflow a buffer and gain full control of the database services. On Microsoft Windows NT and Windows 2000 the TNS listener service has LocalSystem privileges that allow a remote attacker to gain
control of the operating system as well as the database services. On UNIX platforms, a remote attacker may gain whatever privileges are owned by the oracle user account.

Microsoft IIS Server is vulnerable from superfluous decoding

NetRecon can discover a Microsoft IIS server that superfluously decodes URL characters that can lead to a remote intruder running arbitrary commands. Following RFC 2396 standards, web servers will decode characters in a URI or URL that have been escaped and represented in a hexadecimal format. According to the RFC, characters may be escaped by the percent sign (%) followed by two hexadecimal digits representing the character. For example, the string ‘A string in a URL’ can be represented by ‘A%20string in %61 URL’.

Security measures have been implemented within IIS to avoid remote intruders from escaping directory traversal characters i.e.‘../’ and gaining access to files outside the web servers document root. However, because IIS decodes some of the input twice and security checks are only applied to the results of the first decoding, intruders are still able to arbitrarily access files on the volume. This can be particularly dangerous when files such as ‘cmd.exe’ are accessed, as it will allow the remote intruder to run commands on the IIS server.

Tomcat allows directory traversal

NetRecon can discover a Tomcat Java Server that allows directory traversals. A remote user can view the contents of files outside of the document root directory by making HTTP requests with directory traversals in the URL. Disclosure of this type of information can provide remote intruders with possible vulnerabilities that they can exploit. It may also divulge privileged information that may compromise confidentiality.
Tomcat allows script source code disclosure

NetRecon can discover a Tomcat Java Server that allows script source code to be disclosed by using URL escaped characters. A remote user can obtain the source code for JavaServer Pages by using URL encoding within an HTTP request, or by using a malformed HTTP request. NetRecon detects both of these exploit methods. Disclosure of this type of information can provide remote intruders with possible vulnerabilities they can exploit.

New Objectives

IIS Indexing Service exposure may allow remote compromise

This objective discovers whether a Microsoft IIS server has Indexing Service extension script mappings (.ida and .idq) enabled. The Indexing Service is known to be vulnerable to at least one buffer overflow exploit (Code Red Worm) that allows complete compromise. This check determines if the .ida and .idq script extensions have been unmapped on the IIS server. The Indexing Service should be unmapped (via the Internet Services Manager in IIS) unless there is a business need.