
506 MULTIPLE PROCESSOR SYSTEMS CHAP. 8

8.1 MULTIPROCESSORS

A shared-memory multiprocessor (or just multiprocessor henceforth) is a
computer system in which two or more CPUs share full access to a common
RAM. A program running on any of the CPUs sees a normal (usually paged) vir-
tual address space. The only unusual property this system has is that the CPU can
write some value into a memory word and then read the word back and get a dif-
ferent value (because another CPU has changed it). When organized correctly,
this property forms the basis of interprocessor communication: one CPU writes
some data into memory and another one reads the data out.

For the most part, multiprocessor operating systems are just regular operating
systems. They handle system calls, do memory management, provide a file sys-
tem, and manage I/O devices. Nevertheless, there are some areas in which they
have unique features. These include process synchronization, resource manage-
ment, and scheduling. Below we will first take a brief look at multiprocessor
hardware and then move on to these operating systems issues.

8.1.1 Multiprocessor Hardware

Although all multiprocessors have the property that every CPU can address all
of memory, some multiprocessors have the additional property that every memory
word can be read as fast as every other memory word. These machines are called
UMA (Uniform Memory Access) multiprocessors. In contrast, NUMA (Nonun-
iform Memory Access) multiprocessors do not have this property. Why this dif-
ference exists will become clear later. We will first examine UMA multiproces-
sors and then move on to NUMA multiprocessors.

UMA Bus-Based SMP Architectures

The simplest multiprocessors are based on a single bus, as illustrated in
Fig. 8-1(a). Two or more CPUs and one or more memory modules all use the
same bus for communication. When a CPU wants to read a memory word, it first
checks to see if the bus is busy. If the bus is idle, the CPU puts the address of the
word it wants on the bus, asserts a few control signals, and waits until the memory
puts the desired word on the bus.

If the bus is busy when a CPU wants to read or write memory, the CPU just
waits until the bus becomes idle. Herein lies the problem with this design. With
two or three CPUs, contention for the bus will be manageable; with 32 or 64 it
will be unbearable. The system will be totally limited by the bandwidth of the
bus, and most of the CPUs will be idle most of the time.

The solution to this problem is to add a cache to each CPU, as depicted in
Fig. 8-1(b). The cache can be inside the CPU chip, next to the CPU chip, on the
processor board, or some combination of all three. Since many reads can now be

SEC. 8.1 MULTIPROCESSORS 507

CPU CPU M

Shared memory
Shared
memory

Bus
(a)

CPU CPU M

Private memory

(b)

CPU CPU M

(c)

Cache

Figure 8-1. Three bus-based multiprocessors. (a) Without caching. (b) With
caching. (c) With caching and private memories.

satisfied out of the local cache, there will be much less bus traffic, and the system
can support more CPUs. In general, caching is not done on an individual word
basis but on the basis of 32- or 64-byte blocks. When a word is referenced, its
entire block is fetched into the cache of the CPU touching it.

Each cache block is marked as being either read-only (in which case it can be
present in multiple caches at the same time), or as read-write (in which case it
may not be present in any other caches). If a CPU attempts to write a word that is
in one or more remote caches, the bus hardware detects the write and puts a signal
on the bus informing all other caches of the write. If other caches have a ‘‘clean’’
copy, that is, an exact copy of what is in memory, they can just discard their
copies and let the writer fetch the cache block from memory before modifying it.
If some other cache has a ‘‘dirty’’ (i.e., modified) copy, it must either write it back
to memory before the write can proceed or transfer it directly to the writer over
the bus. Many cache transfer protocols exist.

Yet another possibility is the design of Fig. 8-1(c), in which each CPU has not
only a cache, but also a local, private memory which it accesses over a dedicated
(private) bus. To use this configuration optimally, the compiler should place all
the program text, strings, constants and other read-only data, stacks, and local
variables in the private memories. The shared memory is then only used for writ-
able shared variables. In most cases, this careful placement will greatly reduce
bus traffic, but it does require active cooperation from the compiler.

UMA Multiprocessors Using Crossbar Switches

Even with the best caching, the use of a single bus limits the size of a UMA
multiprocessor to about 16 or 32 CPUs. To go beyond that, a different kind of
interconnection network is needed. The simplest circuit for connecting n CPUs to
k memories is the crossbar switch, shown in Fig. 8-2. Crossbar switches have
been used for decades within telephone switching exchanges to connect a group of
incoming lines to a set of outgoing lines in an arbitrary way.

At each intersection of a horizontal (incoming) and vertical (outgoing) line is

508 MULTIPLE PROCESSOR SYSTEMS CHAP. 8

a crosspoint. A crosspoint is a small switch that can be electrically opened or
closed, depending on whether the horizontal and vertical lines are to be connected
or not. In Fig. 8-2(a) we see three crosspoints closed simultaneously, allowing
connections between the (CPU, memory) pairs (001, 000), (101, 101), and (110,
010) at the same time. Many other combinations are also possible. In fact, the
number of combinations is equal to the number of different ways eight rooks can
be safely placed on a chess board.

Memories

C
P

U
s

Closed
crosspoint
switch

Open
crosspoint
switch

(a)

(b)

(c)

Crosspoint
switch is closed

Crosspoint
switch is open

000

001

010

011

100

101

110

111

10
0

10
1

11
0

11
1

00
0

00
1

01
0

01
1

Figure 8-2. (a) An 8 × 8 crossbar switch. (b) An open crosspoint. (c) A closed
crosspoint.

One of the nicest properties of the crossbar switch is that it is a nonblocking
network, meaning that no CPU is ever denied the connection it needs because
some crosspoint or line is already occupied (assuming the memory module itself
is available). Furthermore, no advance planning is needed. Even if seven arbi-
trary connections are already set up, it is always possible to connect the remaining
CPU to the remaining memory.

One of the worst properties of the crossbar switch is the fact that the number
of crosspoints grows as n 2 . With 1000 CPUs and 1000 memory modules we need
a million crosspoints. Such a large crossbar switch is not feasible. Nevertheless,
for medium-sized systems, a crossbar design is workable.

SEC. 8.1 MULTIPROCESSORS 509

UMA Multiprocessors Using Multistage Switching Networks

A completely different multiprocessor design is based on the humble 2 × 2
switch shown in Fig. 8-3(a). This switch has two inputs and two outputs. Mes-
sages arriving on either input line can be switched to either output line. For our
purposes, messages will contain up to four parts, as shown in Fig. 8-3(b). The
Module field tells which memory to use. The Address specifies an address within
a module. The Opcode gives the operation, such as READ or WRITE. Finally, the
optional Value field may contain an operand, such as a 32-bit word to be written
on a WRITE. The switch inspects the Module field and uses it to determine if the
message should be sent on X or on Y.

A

B

X

Y

(a) (b)

Module Address Opcode Value

Figure 8-3. (a) A 2 × 2 switch. (b) A message format.

Our 2 × 2 switches can be arranged in many ways to build larger multistage
switching networks (Adams et al., 1987; Bhuyan et al., 1989; and Kumar and
Reddy, 1987). One possibility is the no-frills, economy class omega network,
illustrated in Fig. 8-4. Here we have connected eight CPUs to eight memories
using 12 switches. More generally, for n CPUs and n memories we would need
log2n stages, with n/2 switches per stage, for a total of (n/2)log2n switches,
which is a lot better than n 2 crosspoints, especially for large values of n.

CPUs

b

b

b
b

a

a a

a

3 Stages

Memories

000

001

010

011

100

101

110

111

000

001

010

011

100

101

110

111

1A

1B

1C

1D

2A

2B

2C

2D

3A

3B

3C

3D

Figure 8-4. An omega switching network.

510 MULTIPLE PROCESSOR SYSTEMS CHAP. 8

The wiring pattern of the omega network is often called the perfect shuffle,
since the mixing of the signals at each stage resembles a deck of cards being cut
in half and then mixed card-for-card. To see how the omega network works, sup-
pose that CPU 011 wants to read a word from memory module 110. The CPU
sends a READ message to switch 1D containing 110 in the Module field. The
switch takes the first (i.e., leftmost) bit of 110 and uses it for routing. A 0 routes
to the upper output and a 1 routes to the lower one. Since this bit is a 1, the mes-
sage is routed via the lower output to 2D.

All the second-stage switches, including 2D, use the second bit for routing.
This, too, is a 1, so the message is now forwarded via the lower output to 3D.
Here the third bit is tested and found to be a 0. Consequently, the message goes
out on the upper output and arrives at memory 110, as desired. The path followed
by this message is marked in Fig. 8-4 by the letter a.

As the message moves through the switching network, the bits at the left-hand
end of the module number are no longer needed. They can be put to good use by
recording the incoming line number there, so the reply can find its way back. For
path a, the incoming lines are 0 (upper input to 1D), 1 (lower input to 2D), and 1
(lower input to 3D), respectively. The reply is routed back using 011, only read-
ing it from right to left this time.

At the same time all this is going on, CPU 001 wants to write a word to
memory module 001. An analogous process happens here, with the message
routed via the upper, upper, and lower outputs, respectively, marked by the letter
b. When it arrives, its Module field reads 001, representing the path it took.
Since these two requests do not use any of the same switches, lines, or memory
modules, they can proceed in parallel.

Now consider what would happen if CPU 000 simultaneously wanted to ac-
cess memory module 000. Its request would come into conflict with CPU 001’s
request at switch 3A. One of them would have to wait. Unlike the crossbar
switch, the omega network is a blocking network. Not every set of requests can
be processed simultaneously. Conflicts can occur over the use of a wire or a
switch, as well as between requests to memory and replies from memory.

It is clearly desirable to spread the memory references uniformly across the
modules. One common technique is to use the low-order bits as the module num-
ber. Consider, for example, a byte-oriented address space for a computer that
mostly accesses 32-bit words. The 2 low-order bits will usually be 00, but the
next 3 bits will be uniformly distributed. By using these 3 bits as the module
number, consecutively addressed words will be in consecutive modules. A mem-
ory system in which consecutive words are in different modules is said to be
interleaved. Interleaved memories maximize parallelism because most memory
references are to consecutive addresses. It is also possible to design switching
networks that are nonblocking and which offer multiple paths from each CPU to
each memory module, to spread the traffic better.

SEC. 8.1 MULTIPROCESSORS 511

NUMA Multiprocessors

Single-bus UMA multiprocessors are generally limited to no more than a few
dozen CPUs and crossbar or switched multiprocessors need a lot of (expensive)
hardware and are not that much bigger. To get to more than 100 CPUs, some-
thing has to give. Usually, what gives is the idea that all memory modules have
the same access time. This concession leads to the idea of NUMA multiproces-
sors, as mentioned above. Like their UMA cousins, they provide a single address
space across all the CPUs, but unlike the UMA machines, access to local memory
modules is faster than access to remote ones. Thus all UMA programs will run
without change on NUMA machines, but the performance will be worse than on a
UMA machine at the same clock speed.

NUMA machines have three key characteristics that all of them possess and
which together distinguish them from other multiprocessors:

1. There is a single address space visible to all CPUs.

2. Access to remote memory is via LOAD and STORE instructions.

3. Access to remote memory is slower than access to local memory.

When the access time to remote memory is not hidden (because there is no cach-
ing), the system is called NC-NUMA. When coherent caches are present, the sys-
tem is called CC-NUMA (Cache-Coherent NUMA).

The most popular approach for building large CC-NUMA multiprocessors
currently is the directory-based multiprocessor. The idea is to maintain a data-
base telling where each cache line is and what its status is. When a cache line is
referenced, the database is queried to find out where it is and whether it is clean or
dirty (modified). Since this database must be queried on every instruction that
references memory, it must be kept in extremely-fast special-purpose hardware
that can respond in a fraction of a bus cycle.

To make the idea of a directory-based multiprocessor somewhat more con-
crete, let us consider as a simple (hypothetical) example, a 256-node system, each
node consisting of one CPU and 16 MB of RAM connected to the CPU via a local
bus. The total memory is 232 bytes, divided up into 226 cache lines of 64 bytes
each. The memory is statically allocated among the nodes, with 0–16M in node 0,
16M–32M in node 1, and so on. The nodes are connected by an interconnection
network, as shown in Fig. 8-5(a). Each node also holds the directory entries for
the 218 64-byte cache lines comprising its 224 byte memory. For the moment, we
will assume that a line can be held in at most one cache.

To see how the directory works, let us trace a LOAD instruction from CPU 20
that references a cached line. First the CPU issuing the instruction presents it to
its MMU, which translates it to a physical address, say, 0x24000108. The MMU
splits this address into the three parts shown in Fig. 8-5(b). In decimal, the three

512 MULTIPLE PROCESSOR SYSTEMS CHAP. 8

Directory

Node 0 Node 1 Node 255

(a)

(b)

Bits 8 18 6

(c)

Interconnection network

CPU Memory

Local bus

CPU Memory

Local bus

CPU Memory

Local bus

Node Block Offset

0
1
2
3
4

0
0
1
0
0

218-1

82

…

Figure 8-5. (a) A 256-node directory-based multiprocessor. (b) Division of a
32-bit memory address into fields. (c) The directory at node 36.

parts are node 36, line 4, and offset 8. The MMU sees that the memory word
referenced is from node 36, not node 20, so it sends a request message through the
interconnection network to the line’s home node, 36, asking whether its line 4 is
cached, and if so, where.

When the request arrives at node 36 over the interconnection network, it is
routed to the directory hardware. The hardware indexes into its table of 218

entries, one for each of its cache lines and extracts entry 4. From Fig. 8-5(c) we
see that the line is not cached, so the hardware fetches line 4 from the local RAM,
sends it back to node 20, and updates directory entry 4 to indicate that the line is
now cached at node 20.

Now let us consider a second request, this time asking about node 36’s line 2.
From Fig. 8-5(c) we see that this line is cached at node 82. At this point the
hardware could update directory entry 2 to say that the line is now at node 20 and
then send a message to node 82 instructing it to pass the line to node 20 and
invalidate its cache. Note that even a so-called ‘‘shared-memory multiprocessor’’
has a lot of message passing going on under the hood.

As a quick aside, let us calculate how much memory is being taken up by the
directories. Each node has 16 MB of RAM and 218 9-bit entries to keep track of
that RAM. Thus the directory overhead is about 9 × 218 bits divided by 16 MB or

SEC. 8.1 MULTIPROCESSORS 513

about 1.76 percent, which is generally acceptable (although it has to be high-
speed memory, which increases its cost). Even with 32-byte cache lines the over-
head would only be 4 percent. With 128-byte cache lines, it would be under 1
percent.

An obvious limitation of this design is that a line can be cached at only one
node. To allow lines to be cached at multiple nodes, we would need some way of
locating all of them, for example, to invalidate or update them on a write. Various
options are possible to allow caching at several nodes at the same time, but a dis-
cussion of these is beyond the scope of this book.

8.1.2 Multiprocessor Operating System Types

Let us now turn from multiprocessor hardware to multiprocessor software, in
particular, multiprocessor operating systems. Various organizations are possible.
Below we will study three of them.

Each CPU Has Its Own Operating System

The simplest possible way to organize a multiprocessor operating system is to
statically divide memory into as many partitions as there are CPUs and give each
CPU its own private memory and its own private copy of the operating system. In
effect, the n CPUs then operate as n independent computers. One obvious optimi-
zation is to allow all the CPUs to share the operating system code and make
private copies of only the data, as shown in Fig. 8-6.

Has
private

OS

CPU 1

Has
private

OS

CPU 2

Has
private

OS

CPU 3

Has
private

OS

CPU 4 Memory I/O
1 2

Data Data
3 4

Data Data
OS code

Bus

Figure 8-6. Partitioning multiprocessor memory among four CPUs, but sharing
a single copy of the operating system code. The boxes marked Data are the
operating system’s private data for each CPU.

This scheme is still better than having n separate computers since it allows all
the machines to share a set of disks and other I/O devices, and it also allows the
memory to be shared flexibly. For example, if one day an unusually large pro-
gram has to be run, one of the CPUs can be allocated an extra large portion of
memory for the duration of that program. In addition, processes can efficiently
communicate with one another by having, say a producer be able to write data
into memory and have a consumer fetch it from the place the producer wrote it.

514 MULTIPLE PROCESSOR SYSTEMS CHAP. 8

Still, from an operating systems’ perspective, having each CPU have its own
operating system is as primitive as it gets.

It is worth explicitly mentioning four aspects of this design that may not be
obvious. First, when a process makes a system call, the system call is caught and
handled on its own CPU using the data structures in that operating system’s
tables.

Second, since each operating system has its own tables, it also has its own set
of processes that it schedules by itself. There is no sharing of processes. If a user
logs into CPU 1, all of his processes run on CPU 1. As a consequence, it can hap-
pen that CPU 1 is idle while CPU 2 is loaded with work.

Third, there is no sharing of pages. It can happen that CPU 1 has pages to
spare while CPU 2 is paging continuously. There is no way for CPU 2 to borrow
some pages from CPU 1 since the memory allocation is fixed.

Fourth, and worst, if the operating system maintains a buffer cache of recently
used disk blocks, each operating system does this independently of the other ones.
Thus it can happen that a certain disk block is present and dirty in multiple buffer
caches at the same time, leading to inconsistent results. The only way to avoid
this problem is to eliminate the buffer caches. Doing so is not hard, but it hurts
performance considerably.

Master-Slave Multiprocessors

For these reasons, this model is rarely used any more, although it was used in
the early days of multiprocessors, when the goal was to port existing operating
systems to some new multiprocessor as fast as possible. A second model is shown
in Fig. 8-7. Here, one copy of the operating system and its tables are present on
CPU 1 and not on any of the others. All system calls are redirected to CPU 1 for
processing there. CPU 1 may also run user processes if there is CPU time left
over. This model is called master-slave since CPU 1 is the master and all the
others are slaves.

Master
runs
OS

CPU 1

Slave
runs user
processes

CPU 2

Slave
runs user
processes

CPU 3

User
processes

OS

CPU 4 Memory I/O

Bus

Slave
runs user
processes

Figure 8-7. A master-slave multiprocessor model.

The master-slave model solves most of the problems of the first model. There
is a single data structure (e.g., one list or a set of prioritized lists) that keeps track

SEC. 8.1 MULTIPROCESSORS 515

of ready processes. When a CPU goes idle, it asks the operating system for a
process to run and it is assigned one. Thus it can never happen that one CPU is
idle while another is overloaded. Similarly, pages can be allocated among all the
processes dynamically and there is only one buffer cache, so inconsistencies never
occur.

The problem with this model is that with many CPUs, the master will become
a bottleneck. After all, it must handle all system calls from all CPUs. If, say,
10% of all time is spent handling system calls, then 10 CPUs will pretty much
saturate the master, and with 20 CPUs it will be completely overloaded. Thus this
model is simple and workable for small multiprocessors, but for large ones it fails.

Symmetric Multiprocessors

Our third model, the SMP (Symmetric MultiProcessor), eliminates this
asymmetry. There is one copy of the operating system in memory, but any CPU
can run it. When a system call is made, the CPU on which the system call was
made traps to the kernel and processes the system call. The SMP model is illus-
trated in Fig. 8-8.

Runs
users and
shared OS

CPU 1

Runs
users and
shared OS

CPU 2

Runs
users and
shared OS

CPU 3

Runs
users and
shared OS OS

CPU 4 Memory I/O

Locks

Bus

Figure 8-8. The SMP multiprocessor model.

This model balances processes and memory dynamically, since there is only
one set of operating system tables. It also eliminates the master CPU bottleneck,
since there is no master, but it introduces its own problems. In particular, if two
or more CPUs are running operating system code at the same time, disaster will
result. Imagine two CPUs simultaneously picking the same process to run or
claiming the same free memory page. The simplest way around these problems is
to associate a mutex (i.e., lock) with the operating system, making the whole sys-
tem one big critical region. When a CPU wants to run operating system code, it
must first acquire the mutex. If the mutex is locked, it just waits. In this way, any
CPU can run the operating system, but only one at a time.

This model works, but is almost as bad as the master-slave model. Again,
suppose that 10% of all run time is spent inside the operating system. With 20
CPUs, there will be long queues of CPUs waiting to get in. Fortunately, it is easy

516 MULTIPLE PROCESSOR SYSTEMS CHAP. 8

to improve. Many parts of the operating system are independent of one another.
For example, there is no problem with one CPU running the scheduler while
another CPU is handling a file system call and a third one is processing a page
fault.

This observation leads to splitting the operating system up into independent
critical regions that do not interact with one another. Each critical region is pro-
tected by its own mutex, so only one CPU at a time can execute it. In this way,
far more parallelism can be achieved. However, it may well happen that some
tables, such as the process table, are used by multiple critical regions. For exam-
ple, the process table is needed for scheduling, but also for the fork system call
and also for signal handling. Each table that may be used by multiple critical
regions needs its own mutex. In this way, each critical region can be executed by
only one CPU at a time and each critical table can be accessed by only one CPU
at a time.

Most modern multiprocessors use this arrangement. The hard part about writ-
ing the operating system for such a machine is not that the actual code is so dif-
ferent from a regular operating system. It is not. The hard part is splitting it into
critical regions that can be executed concurrently by different CPUs without
interfering with one another, not even in subtle, indirect ways. In addition, every
table used by two or more critical regions must be separately protected by a mutex
and all code using the table must use the mutex correctly.

Furthermore, great care must be taken to avoid deadlocks. If two critical
regions both need table A and table B, and one of them claims A first and the other
claims B first, sooner or later a deadlock will occur and nobody will know why.
In theory, all the tables could be assigned integer values and all the critical
regions could be required to acquire tables in increasing order. This strategy
avoids deadlocks, but it requires the programmer to think very carefully which
tables each critical region needs to make the requests in the right order.

As the code evolves over time, a critical region may need a new table it did
not previously need. If the programmer is new and does not understand the full
logic of the system, then the temptation will be to just grab the mutex on the table
at the point it is needed and release it when it is no longer needed. However rea-
sonable this may appear, it may lead to deadlocks, which the user will perceive as
the system freezing. Getting it right is not easy and keeping it right over a period
of years in the face of changing programmers is very difficult.

8.1.3 Multiprocessor Synchronization

The CPUs in a multiprocessor frequently need to synchronize. We just saw
the case in which kernel critical regions and tables have to be protected by
mutexes. Let us now take a close look at how this synchronization actually works
in a multiprocessor. It is far from trivial, as we will soon see.

To start with, proper synchronization primitives are really needed. If a

SEC. 8.1 MULTIPROCESSORS 517

process on a uniprocessor makes a system call that requires accessing some criti-
cal kernel table, the kernel code can just disable interrupts before touching the
table. It can then do its work knowing that it will be able to finish without any
other process sneaking in and touching the table before it is finished. On a mul-
tiprocessor, disabling interrupts affects only the CPU doing the disable. Other
CPUs continue to run and can still touch the critical table. As a consequence, a
proper mutex protocol must be used and respected by all CPUs to guarantee that
mutual exclusion works.

The heart of any practical mutex protocol is an instruction that allows a
memory word to be inspected and set in one indivisible operation. We saw how
TSL (Test and Set Lock) was used in Fig. 2-22 to implement critical regions. As
we discussed earlier, what this instruction does is read out a memory word and
store it in a register. Simultaneously, it writes a 1 (or some other nonzero value)
into the memory word. Of course, it takes two separate bus cycles to perform the
memory read and memory write. On a uniprocessor, as long as the instruction
cannot be broken off halfway, TSL always works as expected.

Now think about what could happen on a multiprocessor. In Fig. 8-9 we see
the worst case timing, in which memory word 1000, being used as a lock is ini-
tially 0. In step 1, CPU 1 reads out the word and gets a 0. In step 2, before CPU
1 has a chance to rewrite the word to 1, CPU 2 gets in and also reads the word out
as a 0. In step 3, CPU 1 writes a 1 into the word. In step 4, CPU 2 also writes a 1
into the word. Both CPUs got a 0 back from the TSL instruction, so both of them
now have access to the critical region and the mutual exclusion fails.

CPU 1 Memory CPU 2

Bus

Word
1000 is

initially 0

1. CPU 1 reads a 0

3. CPU 1 writes a 1

2. CPU 2 reads a 0

4. CPU 2 writes a 1

Figure 8-9. The TSL instruction can fail if the bus cannot be locked. These four
steps show a sequence of events where the failure is demonstrated.

To prevent this problem, the TSL instruction must first lock the bus, prevent-
ing other CPUs from accessing it, then do both memory accesses, then unlock the
bus. Typically, locking the bus is done by requesting the bus using the usual bus
request protocol, then asserting (i.e., setting to a logical 1) some special bus line
until both cycles have been completed. As long as this special line is being
asserted, no other CPU will be granted bus access. This instruction can only be
implemented on a bus that has the necessary lines and (hardware) protocol for

518 MULTIPLE PROCESSOR SYSTEMS CHAP. 8

using them. Modern buses have these facilities, but on earlier ones that did not, it
was not possible to implement TSL correctly. This is why Peterson’s protocol was
invented, to synchronize entirely in software (Peterson, 1981).

If TSL is correctly implemented and used, it guarantees that mutual exclusion
can be made to work. However, this mutual exclusion method uses a spin lock
because the requesting CPU just sits in a tight loop testing the lock as fast as it
can. Not only does it completely waste the time of the requesting CPU (or CPUs),
but it may also put a massive load on the bus or memory, seriously slowing down
all other CPUs trying to do their normal work.

At first glance, it might appear that the presence of caching should eliminate
the problem of bus contention, but it does not. In theory, once the requesting CPU
has read the lock word, it should get a copy in its cache. As long as no other CPU
attempts to use the lock, the requesting CPU should be able to run out of its cache.
When the CPU owning the lock writes a 1 to it to release it, the cache protocol
automatically invalidates all copies of it in remote caches requiring the correct
value to be fetched again.

The problem is that caches operate in blocks of 32 or 64 bytes. Usually, the
words surrounding the lock are needed by the CPU holding the lock. Since the
TSL instruction is a write (because it modifies the lock), it needs exclusive access
to the cache block containing the lock. Therefore every TSL invalidates the block
in the lock holder’s cache and fetches a private, exclusive copy for the requesting
CPU. As soon as the lock holder touches a word adjacent to the lock, the cache
block is moved to its machine. Consequently, the entire cache block containing
the lock is constantly being shuttled between the lock owner and the lock reques-
ter, generating even more bus traffic than individual reads on the lock word would
have.

If we could get rid of all the TSL-induced writes on the requesting side, we
could reduce cache thrashing appreciably. This goal can be accomplished by hav-
ing the requesting CPU first do a pure read to see if the lock is free. Only if the
lock appears to be free does it do a TSL to actually acquire it. The result of this
small change is that most of the polls are now reads instead of writes. If the CPU
holding the lock is only reading the variables in the same cache block, they can
each have a copy of the cache block in shared read-only mode, eliminating all the
cache block transfers. When the lock is finally freed, the owner does a write,
which requires exclusive access, thus invalidating all the other copies in remote
caches. On the next read by the requesting CPU, the cache block will be re-
loaded. Note that if two or more CPUs are contending for the same lock, it can
happen that both see that it is free simultaneously, and both do a TSL simultane-
ously to acquire it. Only one of these will succeed, so there is no race condition
here because the real acquisition is done by the TSL instruction, and this instruc-
tion is atomic. Seeing that the lock is free and then trying to grab it immediately
with a CX u TSL does not guarantee that you get it. Someone else might win.

Another way to reduce bus traffic is to use the Ethernet binary exponential

SEC. 8.1 MULTIPROCESSORS 519

backoff algorithm (Anderson, 1990). Instead of continuously polling, as in
Fig. 2-22, a delay loop can be inserted between polls. Initially the delay is one
instruction. If the lock is still busy, the delay is doubled to two instructions, then
four instructions and so on up to some maximum. A low maximum gives fast
response when the lock is released, but wastes more bus cycles on cache thrash-
ing. A high maximum reduces cache thrashing at the expense of not noticing that
the lock is free so quickly. Binary exponential backoff can be used with or
without the pure reads preceding the TSL instruction.

An even better idea is to give each CPU wishing to acquire the mutex its own
private lock variable to test, as illustrated in Fig. 8-10 (Mellor-Crummey and
Scott, 1991). The variable should reside in an otherwise unused cache block to
avoid conflicts. The algorithm works by having a CPU that fails to acquire the
lock allocate a lock variable and attach itself to the end of a list of CPUs waiting
for the lock. When the current lock holder exits the critical region, it frees the
private lock that the first CPU on the list is testing (in its own cache). This CPU
then enters the critical region. When it is done, it frees the lock its successor is
using, and so on. Although the protocol is somewhat complicated (to avoid hav-
ing two CPUs attach themselves to the end of the list simultaneously), it is effi-
cient and starvation free. For all the details, readers should consult the paper.

CPU 3
CPU 3 spins on this (private) lock

CPU 4 spins on this (private) lock
CPU 2 spins on this (private) lock

When CPU 1 is finished with the
real lock, it releases it and also
releases the private lock CPU 2
is spinning on

CPU 1
holds the
real lock

Shared memory

42

3

1

Figure 8-10. Use of multiple locks to avoid cache thrashing.

Spinning versus Switching

So far we have assumed that a CPU needing a locked mutex just waits for it,
either by polling continuously, polling intermittently, or attaching itself to a list of
waiting CPUs. In some cases, there is no real alternative for the requesting CPU
to just waiting. For example, suppose that some CPU is idle and needs to access
the shared ready list to pick a process to run. If the ready list is locked, the CPU
cannot just decide to suspend what it is doing and run another process, because

520 MULTIPLE PROCESSOR SYSTEMS CHAP. 8

doing that would require access to the ready list. It must wait until it can acquire
the ready list.

However, in other cases, there is a choice. For example, if some thread on a
CPU needs to access the file system buffer cache and that is currently locked, the
CPU can decide to switch to a different thread instead of waiting. The issue of
whether to spin or whether to do a thread switch has been a matter of much
research, some of which will be discussed below. Note that this issue does not
occur on a uniprocessor because spinning does not make much sense when there
is no other CPU to release the lock. If a thread tries to acquire a lock and fails, it
is always blocked to give the lock owner a chance to run and release the lock.

Assuming that spinning and doing a thread switch are both feasible options,
the trade-off is as follows. Spinning wastes CPU cycles directly. Testing a lock
repeatedly is not productive work. Switching, however, also wastes CPU cycles,
since the current thread’s state must be saved, the lock on the ready list must be
acquired, a thread must be selected, its state must be loaded, and it must be
started. Furthermore, the CPU cache will contain all the wrong blocks, so many
expensive cache misses will occur as the new thread starts running. TLB faults
are also likely. Eventually, a switch back to the original thread must take place,
with more cache misses following it. The cycles spent doing these two context
switches plus all the cache misses are wasted.

If it is known that mutexes are generally held for, say, 50 µsec and it takes 1
msec to switch from the current thread and 1 msec to switch back later, it is more
efficient just to spin on the mutex. On the other hand, if the average mutex is held
for 10 msec, it is worth the trouble of making the two context switches. The trou-
ble is that critical regions can vary considerably in their duration, so which
approach is better?

One design is to always spin. A second design is to always switch. But a
third design is to make a separate decision each time a locked mutex is encoun-
tered. At the time the decision has to be made, it is not known whether it is better
to spin or switch, but for any given system, it is possible to make a trace of all
activity and analyze it later offline. Then it can be said in retrospect which deci-
sion was the best one and how much time was wasted in the best case. This hind-
sight algorithm then becomes a benchmark against which feasible algorithms can
be measured.

This problem has been studied by researchers (Karlin et al., 1989; Karlin et
al., 1991; and Ousterhout, 1982). Most work uses a model in which a thread fail-
ing to acquire a mutex spins for some period of time. If this threshold is ex-
ceeded, it switches. In some cases the threshold is fixed, typically the known
overhead for switching to another thread and then switching back. In other cases
it is dynamic, depending on the observed history of the mutex being waited on.

The best results are achieved when the system keeps track of the last few
observed spin times and assumes that this one will be similar to the previous ones.
For example, assuming a 1-msec context switch time again, a thread would spin

SEC. 8.1 MULTIPROCESSORS 521

for a maximum of 2 msec, but observe how long it actually spun. If it fails to
acquire a lock and sees that on the previous three runs it waited an average of 200
µsec, it should spin for 2 msec before switching. However, it if sees that it spun
for the full 2 msec on each of the previous attempts, it should switch immediately
and not spin at all. More details can be found in (Karlin et al., 1991).

8.1.4 Multiprocessor Scheduling

On a uniprocessor, scheduling is one dimensional. The only question that
must be answered (repeatedly) is: ‘‘Which process should be run next?’’ On a
multiprocessor, scheduling is two dimensional. The scheduler has to decide
which process to run and which CPU to run it on. This extra dimension greatly
complicates scheduling on multiprocessors.

Another complicating factor is that in some systems, all the processes are
unrelated whereas in others they come in groups. An example of the former situa-
tion is a timesharing system in which independent users start up independent
processes. The processes are unrelated and each one can be scheduled without
regard to the other ones.

An example of the latter situation occurs regularly in program development
environments. Large systems often consist of some number of header files con-
taining macros, type definitions, and variable declarations that are used by the
actual code files. When a header file is changed, all the code files that include it
must be recompiled. The program make is commonly used to manage develop-
ment. When make is invoked, it starts the compilation of only those code files
that must be recompiled on account of changes to the header or code files. Object
files that are still valid are not regenerated.

The original version of make did its work sequentially, but newer versions
designed for multiprocessors can start up all the compilations at once. If 10 com-
pilations are needed, it does not make sense to schedule 9 of them quickly and
leave the last one until much later since the user will not perceive the work as
completed until the last one finishes. In this case it makes sense to regard the
processes as a group and to take that into account when scheduling them.

Timesharing

Let us first address the case of scheduling independent processes; later we
will consider how to schedule related processes. The simplest scheduling algo-
rithm for dealing with unrelated processes (or threads) is to have a single system-
wide data structure for ready processes, possibly just a list, but more likely a set of
lists for processes at different priorities as depicted in Fig. 8-11(a). Here the 16
CPUs are all currently busy, and a prioritized set of 14 processes are waiting to
run. The first CPU to finish its current work (or have its process block) is CPU 4,
which then locks the scheduling queues and selects the highest priority process, A,

522 MULTIPLE PROCESSOR SYSTEMS CHAP. 8

as shown in Fig. 8-11(b). Next, CPU 12 goes idle and chooses process B, as illus-
trated in Fig. 8-11(c). As long as the processes are completely unrelated, doing
scheduling this way is a reasonable choice.

0

4

8

12

1

5

9

13

2

6

10

14

3

7

11

15

A B C

D E

F

G H I

J K

L M N

7

5
4

2
1

0

Priority

CPU

0

A

8

12

1

5

9

13

2

6

10

14

3

7

11

15

B C

D E

F

G H I

J K

L M N

7

5
4

2
1

0

Priority

CPU 4
goes idle

CPU 12
goes idle

0

A

8

B

1

5

9

13

2

6

10

14

3

7

11

15

C

D E

F

G H I

J K

L M N

7

5
4

2
3 3 3

6 6 6

1

0

Priority

(a) (b) (c)

Figure 8-11. Using a single data structure for scheduling a multiprocessor.

Having a single scheduling data structure used by all CPUs timeshares the
CPUs, much as they would be in a uniprocessor system. It also provides auto-
matic load balancing because it can never happen that one CPU is idle while oth-
ers are overloaded. Two disadvantages of this approach are the potential conten-
tion for the scheduling data structure as the numbers of CPUs grows and the usual
overhead in doing a context switch when a process blocks for I/O.

It is also possible that a context switch happens when a process’ quantum
expires. On a multiprocessor, that has certain properties not present on a unipro-
cessor. Suppose that the process holds a spin lock, not unusual on multiproces-
sors, as discussed above. Other CPUs waiting on the spin lock just waste their
time spinning until that process is scheduled again and releases the lock. On a
uniprocessor, spin locks are rarely used so if a process is suspended while it holds
a mutex, and another process starts and tries to acquire the mutex, it will be
immediately blocked, so little time is wasted.

To get around this anomaly, some systems use smart scheduling, in which a
process acquiring a spin lock sets a process-wide flag to show that it currently has
a spin lock (Zahorjan et al., 1991). When it releases the lock, it clears the flag.
The scheduler then does not stop a process holding a spin lock, but instead gives it
a little more time to complete its critical region and release the lock.

Another issue that plays a role in scheduling is the fact that while all CPUs
are equal, some CPUs are more equal. In particular, when process A has run for a
long time on CPU k, CPU k’s cache will be full of A’s blocks. If A gets to run
again soon, it may perform better if it is run on CPU k, because k’s cache may still

SEC. 8.1 MULTIPROCESSORS 523

contain some of A’s blocks. Having cache blocks preloaded will increase the
cache hit rate and thus the process’ speed. In addition, the TLB may also contain
the right pages, reducing TLB faults.

Some multiprocessors take this effect into account and use what is called
affinity scheduling (Vaswani and Zahorjan, 1991). The basic idea here is to
make a serious effort to have a process run on the same CPU it ran on last time.
One way to create this affinity is to use a two-level scheduling algorithm. When
a process is created, it is assigned to a CPU, for example based on which one has
the smallest load at that moment. This assignment of processes to CPUs is the top
level of the algorithm. As a result, each CPU acquires its own collection of
processes.

The actual scheduling of the processes is the bottom level of the algorithm. It
is done by each CPU separately, using priorities or some other means. By trying
to keep a process on the same CPU, cache affinity is maximized. However, if a
CPU has no processes to run, it takes one from another CPU rather than go idle.

Two-level scheduling has three benefits. First, it distributes the load roughly
evenly over the available CPUs. Second, advantage is taken of cache affinity
where possible. Third, by giving each CPU its own ready list, contention for the
ready lists is minimized because attempts to use another CPU’s ready list are rela-
tively infrequent.

Space Sharing

The other general approach to multiprocessor scheduling can be used when
processes are related to one another in some way. Earlier we mentioned the
example of parallel make as one case. It also often occurs that a single process
creates multiple threads that work together. For our purposes, a job consisting of
multiple related processes or a process consisting of multiple kernel threads are
essentially the same thing. We will refer to the schedulable entities as threads
here, but the material holds for processes as well. Scheduling multiple threads at
the same time across multiple CPUs is called space sharing.

The simplest space sharing algorithm works like this. Assume that an entire
group of related threads is created at once. At the time it is created, the scheduler
checks to see if there are as many free CPUs as there are threads. If there are,
each thread is given its own dedicated (i.e., nonmultiprogrammed) CPU and they
all start. If there are not enough CPUs, none of the threads are started until
enough CPUs are available. Each thread holds onto its CPU until it terminates, at
which time the CPU is put back into the pool of available CPUs. If a thread
blocks on I/O, it continues to hold the CPU, which is simply idle until the thread
wakes up. When the next batch of threads appears, the same algorithm is applied.

At any instant of time, the set of CPUs is statically partitioned into some
number of partitions, each one running the threads of one process. In Fig. 8-12,
we have partitions of sizes 4, 6, 8, and 12 CPUs, with 2 CPUs unassigned, for

524 MULTIPLE PROCESSOR SYSTEMS CHAP. 8

example. As time goes on, the number and size of the partitions will change as
processes come and go.

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

4-CPU partition

12-CPU partitionUnassigned CPU

6-CPU partition

8-CPU partition

Figure 8-12. A set of 32 CPUs split into four partitions, with two CPUs
available.

Periodically, scheduling decisions have to be made. In uniprocessor systems,
shortest job first is a well-known algorithm for batch scheduling. The analogous
algorithm for a multiprocessor is to choose the process needing the smallest
number of CPU cycles, that is the process whose CPU-count × run-time is the
smallest of the candidates. However, in practice, this information is rarely avail-
able, so the algorithm is hard to carry out. In fact, studies have shown that, in
practice, beating first-come, first-served is hard to do (Krueger et al., 1994).

In this simple partitioning model, a process just asks for some number of
CPUs and either gets them all or has to wait until they are available. A different
approach is for processes to actively manage the degree of parallelism. One way
to do manage the parallelism is to have a central server that keeps track of which
processes are running and want to run and what their minimum and maximum
CPU requirements are (Tucker and Gupta, 1989). Periodically, each CPU polls
the central server to ask how many CPUs it may use. It then adjusts the number
of processes or threads up or down to match what is available. For example, a
Web server can have 1, 2, 5, 10, 20, or any other number of threads running in
parallel. If it currently has 10 threads and there is suddenly more demand for
CPUs and it is told to drop to 5, when the next 5 threads finish their current work,
they are told to exit instead of being given new work. This scheme allows the
partition sizes to vary dynamically to match the current workload better than the
fixed system of Fig. 8-12.

Gang Scheduling

A clear advantage of space sharing is the elimination of multiprogramming,
which eliminates the context switching overhead. However, an equally clear
disadvantage is the time wasted when a CPU blocks and has nothing at all to do
until it becomes ready again. Consequently, people have looked for algorithms
that attempt to schedule in both time and space together, especially for processes

SEC. 8.1 MULTIPROCESSORS 525

that create multiple threads, which usually need to communicate with one another.
To see the kind of problem that can occur when the threads of a process (or

processes of a job) are independently scheduled, consider a system with threads
A 0 and A 1 belonging to process A and threads B 0 and B 1 belonging to process B.
threads A 0 and B 0 are timeshared on CPU 0; threads A 1 and B 1 are timeshared
on CPU 1. threads A 0 and A 1 need to communicate often. The communication
pattern is that A 0 sends A 1 a message, with A 1 then sending back a reply to A 0,
followed by another such sequence. Suppose that luck has it that A 0 and B 1 start
first, as shown in Fig. 8-13.

A0 B0 A0 B0 A0 B0

B1 A1 B1 A1 B1 A1

Thread A0 running

0 100 200 300 400 500 600

CPU 0

CPU 1

Time

Request 1 Request 2
Reply 2Reply 1

Figure 8-13. Communication between two threads belonging to process A that
are running out of phase.

In time slice 0, A 0 sends A 1 a request, but A 1 does not get it until it runs in
time slice 1 starting at 100 msec. It sends the reply immediately, but A 0 does not
get the reply until it runs again at 200 msec. The net result is one request-reply
sequence every 200 msec. Not very good.

The solution to this problem is gang scheduling, which is an outgrowth of
co-scheduling (Ousterhout, 1982). Gang scheduling has three parts:

1. Groups of related threads are scheduled as a unit, a gang.

2. All members of a gang run simultaneously, on different timeshared CPUs.

3. All gang members start and end their time slices together.

The trick that makes gang scheduling work is that all CPUs are scheduled syn-
chronously. This means that time is divided into discrete quanta as we had in
Fig. 8-13. At the start of each new quantum, all the CPUs are rescheduled, with a
new thread being started on each one. At the start of the following quantum,
another scheduling event happens. In between, no scheduling is done. If a thread
blocks, its CPU stays idle until the end of the quantum.

An example of how gang scheduling works is given in Fig. 8-14. Here we
have a multiprocessor with six CPUs being used by five processes, A through E,
with a total of 24 ready threads. During time slot 0, threads A 0 through A 6 are

526 MULTIPLE PROCESSOR SYSTEMS CHAP. 8

scheduled and run. During time slot 1, Threads B 0, B 1, B 2, C 0, C 1, and C 2 are
scheduled and run. During time slot 2, D’s five threads and E 0 get to run. The
remaining six threads belonging to process E run in time slot 3. Then the cycle
repeats, with slot 4 being the same as slot 0 and so on.

0

1

2

3

4

5

6

7

0 1 2 3 4 5
A0

B0 B1

D1

E2

A1

B1

D1

E2

A1 A2

B2

D2

E3

A2

B2

D2

E3

A3

D3

E4

A3

C0

D3

E4

C1

D4

E5

A4

C1

D4

E5

C2

E0

E6

A5

C2

E0

E6

C0

A4 A5

D0

E1

A0

B0

D0

E1

CPU

Time
slot

Figure 8-14. Gang scheduling.

The idea of gang scheduling is to have all the threads of a process run
together, so that if one of them sends a request to another one, it will get the mes-
sage almost immediately and be able to reply almost immediately. In Fig. 8-14,
since all the A threads are running together, during one quantum, they may send
and receive a very large number of messages in one quantum, thus eliminating the
problem of Fig. 8-13.

